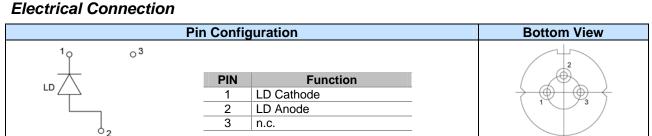


S8410MG

ENTION

FOR HANDLING

ELECTROSTATIC SENSITIVE DEVICES


ΔΤ

TECHNICAL DATA

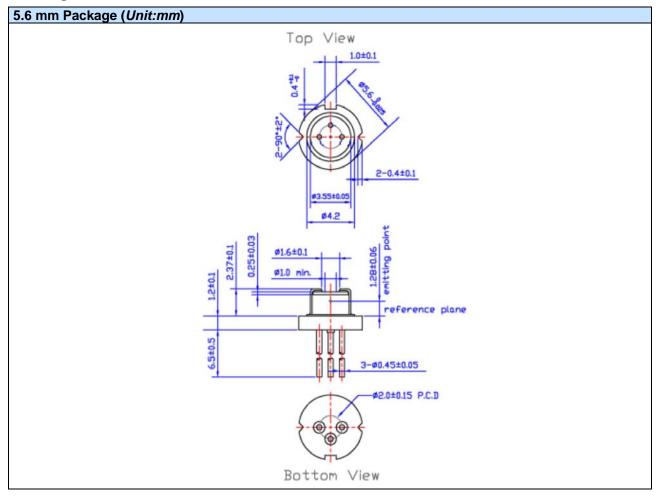
Infrared Laser Diode

Features

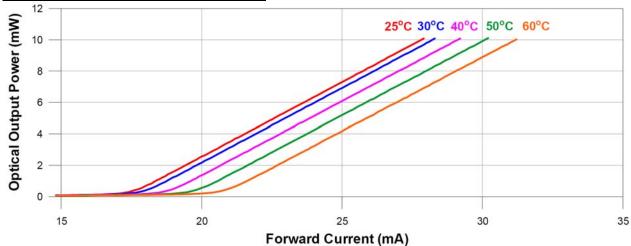
- Lasing Mode Structure: multi mode •
- Peak Wavelength : typ. 840 nm
- Optical Ouput Power: 10 mW
- Package: 5.6 mm

Absolute Maximum Ratings (T_c=20°C)

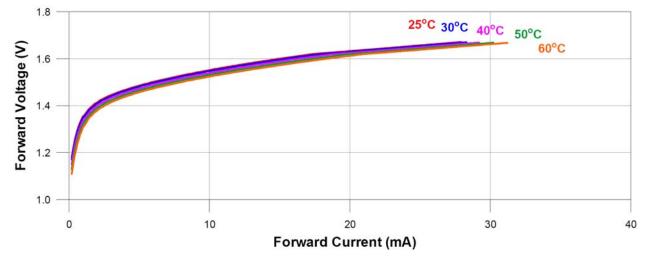
Item	Symbol	Value	Unit
CW Output Power	Po	10	mW
LD Reverse Voltage	Vr	2	V
Operating Case Temperature	Tc	-10 +60	°C
Storage Temperature	T _{stg}	-15 +85	°C

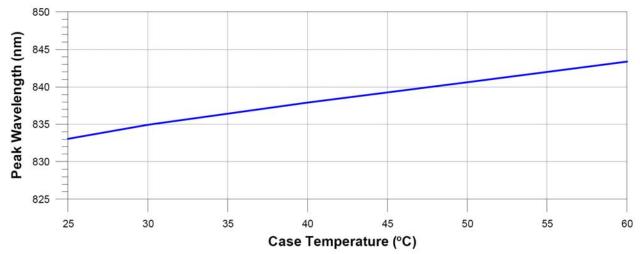

Specifications (T_c=20°C)

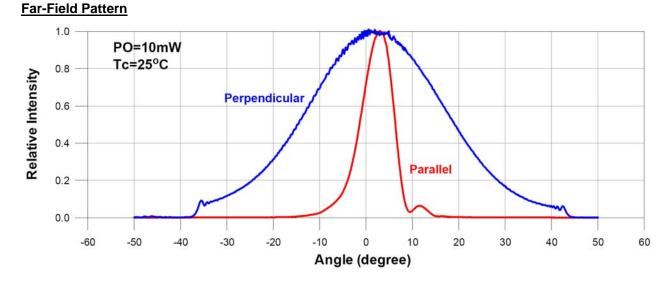
Item	Symbol	Min.	Тур.	Max.	Unit		
Optical Specifications							
CW Output Power	Po	-	10	-	mW		
Center Wavelength	λ _C	830	840	850	nm		
FWHM Beam Divergence	θ∥	-	10	-	deg		
	θ⊥	-	35	-	deg		
Electrical Specifications							
Threshold Current	l _{th}	-	17	23	mA		
Operating Current	I _{op}	-	28	38	mA		
Slope Efficiency	η	0.7	0.95	-	mW/mA		
Operating Voltage		-	1.7	2.1	V		


The above specifications are for reference purpose only and subjected to change without prior notice.

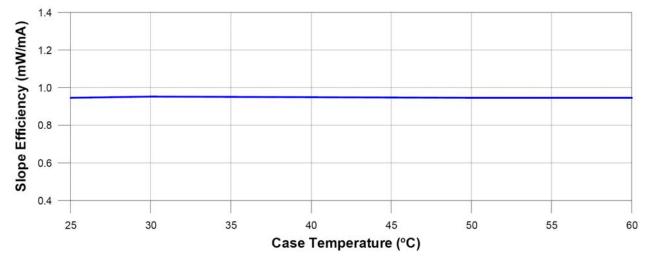
Package Dimensons

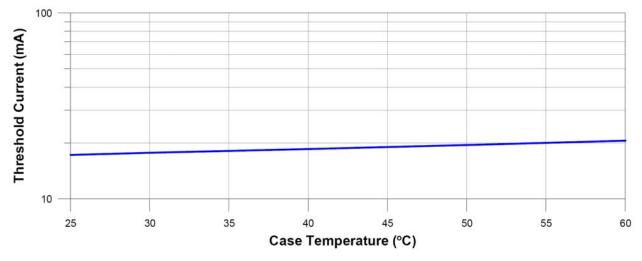

Typical Performance Curves


Optical Ouput Power vs. Forward Current



Forward Voltage vs. Forward Current





Slope Efficiency vs. Case Temperature

Threshold Current vs. Case Temerature

Safety of Laser light

 Laser Light can damage the human eyes and skin. Do not expose the eye or skin directly to any laser light and/or through optical lens. When handling the LDs, wear appropriate safety glasses to prevent laser light, even any reflections from entering to the eye. Focused laser beam through optical instruments will increase the chance of eye hazard.

• These LDs are emitting invisible light.

Cautions

1. Operating methode

- This LD shall change its forward voltage requirement and optical ouput power according to temperature change. Also, the LD will require more operation current to maintain same ouput power as it degrades. In order to maintain output power, use of APC (Automatic Power Control) is recommended. Which use monitor feedback to adjust the operation current.
- Confirm that electrical spike current generated by swithing on and off does not exceed the maximum operating current level specified herein above as absolute maximum rating. Also, employ appropriat countermeasures to reduce chattering and/or overshooting in the circuit.

2. Static Electricity

• Static electricity or electrical surges will reduce and degrade the reliability of the LDs. It is recommended to use a wrist trap or anti-electrostatic glove when handeling the product.

3. Absolute Maximum Rating

• Active layer of LDs shall have high current density and generate high electric field during its operation. In order to prevent excessive damage, the LD must be operated strictly below absolute maximum rating.

