

SPL1064-20-PM-PD

- **Fiber-Coupled Laser Diode** •
- 1064 nm, 20 mW •
- 6 µm Polarization Maintaining Fiber
- **Built-in Photodiode** •

Description

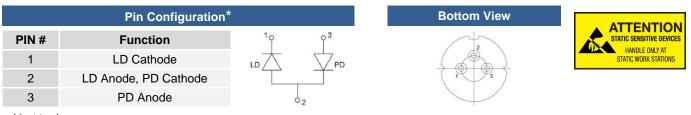
SPL1064-20-PM-PD is an infrared fiber-coupled laser diode, typically emitting at 1064 nm with an output power of 20 mW. It comes in a coaxial package with a mounting bracket, with 6 µm polarization maintaining fiber, FC/APC connector and built-in PD.

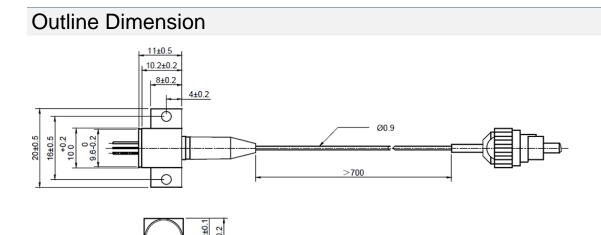
Additional options like closer peak wavelength selection are available on request.

Maximum Rating (TCASE = 25°C)

Parameter	Symbol	Values Min. Max.		Unit
Reverse Voltage	V _R		2.0	V
Operating Temperature	TOPR	- 10	+ 50	°C
Storage Temperature	T _{STG}	- 40	+ 85	°C
Soldering Temperature (max. 3s)	T _{SOL}		+ 260	°C

Electro-Optical Characteristics (TCASE = 25°C)


Parameter		Symbol	Values			l Init
			Min.	Тур.	Max.	Unit
Peak Wavelength *1		λ_{P}	1054	1064	1074	nm
Output Power		Po		20		mW
Spectral Width (FWHM)		$\Delta \lambda$				nm
Threshold Current		<i>I</i> th		20	55	mA
Operating Current		IF		240	260	mA
Operating Voltage		VF		1.8	2.5	V
PD Current		<i>I</i> PD		0.2		mA
Fiber Specification	Туре		Polarization Maintaining			
	Core		6			μm
	Connector *2					
	Length			80	100	Cm
Polarization Extinction Ratio		PER	13	15		dB


*1 optional: down to ±5 nm

Electrical Connection

* subject to change

All dimensions in mm

Precautions

Safety

Caution: Laser light emitted from any laser diode may be harmful to the human eye. Avoid looking directly into the laser diode's aperture when the diode is in operation.

Note: The use of optical lenses with this laser diode will increase eye hazard

ESD Caution

Always do handle laser diodes with extreme care to **prevent electrostatic discharge**, the primary cause of unexpected diode failure. To prevent ESD related failures we strongly advise to always **wearing wrist straps**, and **grounding all applicable work surfaces**, when handling laser diodes

Operating Considerations

We strongly advise to only operate this laser diode with a current source. The current of a laser diode is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory.

Laser diodes may be damaged by excessive drive currents or switching transients

It is advised, to operate the laser diode at the lowest temperature possible, and to never exceed maximum specifications as outlined in the datasheet. Device degradation will accelerate with increased temperature. **Proper heat sinking will greatly enhance stability and life-time of the laser diode.**

© All Rights Reserved

The above specifications are for reference purpose only and subjected to change without prior notice

